Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo – Nature Metabolism

  • Halliwell, B. & Gutteridge J. M. C. Free Radicals in Biology and Medicine 5th edn (Oxford Univ. Press, 2015).

  • Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. (2022).

  • Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell. 81, 3691–3707 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Winterbourn, C. C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840, 730–738 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zielonka, J. et al. Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J. Biol. Chem. 287, 2984–2995 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Forman, H. J. et al. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic. Biol. Med. 78, 233–235 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Brewer, T. F., Garcia, F. J., Onak, C. S., Carroll, K. S. & Chang, C. J. Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84, 765–790 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janssen-Heininger, Y. M. et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic. Biol. Med. 45, 1–17 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, M. P. et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Möller, M. N. et al. Detection and quantification of nitric oxide-derived oxidants in biological systems. J. Biol. Chem. 294, 14776–14802 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varghese, S., Tang, Y. & Imlay, J. A. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J. Bacteriol. 185, 221–230 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halliwell, B., Adhikary, A., Dingfelder, M. & Dizdaroglu, M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 50, 8355–8360 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Halliwell, B. Reflections of an aging free radical. Free Radic. Biol. Med. 161, 234–245 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winterbourn, C. C. Hydrogen peroxide reactivity and specificity in thiol-based cell signalling. Biochem. Soc. Trans. 48, 745–754 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lim, J. M., Kim, G. & Levine, R. L. Methionine in proteins: it’s not just for protein initiation anymore. Neurochem. Res. 44, 247–257 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pedre, B., Barayeu, U., Ezeriņa, D. & Dick, T. P. The mechanism of action of N-acetylcysteine (NAC): the emerging role of H2S and sulfane sulfur species. Pharmacol. Ther. 228, 107916 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Blaner, W. S., Shmarakov, I. O. & Traber, M. G. Vitamin A and vitamin E: will the real antioxidant please stand up? Annu. Rev. Nutr. 41, 105–131 (2021).

    PubMed 

    Google Scholar
     

  • Policar, C., Bouvet, J., Bertrand, H. C. & Delsuc, N. SOD mimics: from the tool box of the chemists to cellular studies. Curr. Opin. Chem. Biol. 67, 102109 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Samuni, U., Samuni, A. & Goldstein, S. Cyclic hydroxylamines as monitors of peroxynitrite and superoxide–revisited. Antioxidants (Basel) 11, 40 (2021).

  • Dhar, S. K., Scott, T., Wang, C., Fan, T. W. M. & St Clair, D. K. Mitochondrial superoxide targets energy metabolism to modulate epigenetic regulation of NRF2-mediated transcription. Free Radic. Biol. Med. 179, 181–189 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Steinhorn, B. et al. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herb, M., Gluschko, A. & Schramm, M. Reactive oxygen species: not omnipresent but important in many locations. Front. Cell Dev. Biol. 9, 716406 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nauseef, W. Detection of superoxide and H2O2 produced by NADPH oxidases. Biochim. Biophys. Acta 1840, 757–767 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Halliwell, B. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed. J. 37, 99–105 (2014).

    PubMed 

    Google Scholar
     

  • Kowaltowski, A. J. Strategies to detect mitochondrial oxidants. Redox Biol. 21, 101065 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kalyanaraman, B. et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52, 1–6 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Brandes, R. P., Rezende, F. & Schröder, K. Redox regulation beyond ROS: why ROS should not be measured as often. Circ. Res. 123, 326–328 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, P. R. Superoxide-driven aconitase Fe-S center cycling. Biosci. Rep. 17, 33–42 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Vásquez-Vivar, J., Hogg, N., Pritchard, K. A. Jr, Martasek, P. & Kalyanaraman, B. Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Lett. 403, 127–130 (1997).

    PubMed 

    Google Scholar
     

  • Zielonka, J., Lambeth, J. D. & Kalyanaraman, B. On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: a reevaluation. Free Radic. Biol. Med. 65, 1310–1314 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zielonka, J., Vasquez-Vivar, J. & Kalyanaraman, B. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat. Protoc. 3, 8–21 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Shchepinova et al. MitoNeoD: a mitochondria-targeted superoxide probe. Cell Chem. Biol. 24, 1285–1298 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowaltowski, A. J. et al. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J. 33, 13176–13188 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Nicholls, D. G. Fluorescence measurement of mitochondrial membrane potential changes in cultured cells. Methods Mol. Biol. 1782, 121–135 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kettle, A. J., Carr, A. C. & Winterbourn, C. C. Assays using horseradish peroxidase and phenolic substrates require superoxide dismutase for accurate determination of hydrogen peroxide production by neutrophils. Free Radic. Biol. Med. 17, 161–164 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Lippert, A. R., Van de Bittner, G. C. & Chang, C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winterbourn, C. C. Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal. 29, 541–551 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gatin-Fraudet, B. et al. Evaluation of borinic acids as new, fast hydrogen peroxide-responsive triggers. Proc. Natl Acad. Sci. USA 118, e2107503118 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Zielonka, J. et al. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem. Res. Toxicol. 25, 1793–1799 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilan, D. S. & Belousov, V. V. In vivo imaging of hydrogen peroxide with HyPer probes. Antioxid. Redox Signal. 29, 569–584 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Morgan, B. et al. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Pak, V. V. et al. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. 31, 642–653 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzman, J. N. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breckwoldt, M. O. et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 20, 555–560 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Augusto, O. et al. Carbon dioxide-catalyzed peroxynitrite reactivity – the resilience of the radical mechanism after two decades of research. Free Radic. Biol. Med. 135, 210–215 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ferrer-Sueta, G. et al. Biochemistry of peroxynitrite and protein tyrosine nitration. Chem. Rev. 118, 1338–1408 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Augusto, O. & Truzzi, D. R. Carbon dioxide redox metabolites in oxidative eustress and oxidative distress. Biophys. Rev. 13, 889–891 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kameritsch, P. et al. The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc. Natl Acad. Sci. USA 118, e1921828118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C. et al. Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118545 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kostyuk, A. I. et al. Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives. Nat. Commun. 13, 171 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frijhoff, J. et al. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal. 23, 1144–1170 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halliwell, B. Establishing the significance and optimal intake of dietary antioxidants: the biomarker concept. Nutr. Rev. 57, 104–113 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Kagan, V. E. Lipid Peroxidation in Biomembranes (CRC Press, 1988).

  • Niki, E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med. 47, 469–484 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Yin, H., Xu, L. & Porter, N. A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • MacDonald, M. L., Murray, I. V. & Axelsen, P. H. Mass spectrometric analysis demonstrates that BODIPY 581/591 C11 overestimates and inhibits oxidative lipid damage. Free Radic. Biol. Med. 42, 1392–1397 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuypers, F. A., van den Berg, J. J., Schalkwijk, C., Roelofsen, B. & Op den Kamp, J. A. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim. Biophys. Acta 921, 266–274 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Esterbauer, H., Schaur, R. J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11, 81–128 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Waeg, G., Dimsity, G. & Esterbauer, H. Monoclonal antibodies for detection of 4-hydroxynonenal modified proteins. Free Radic. Res. 25, 149–159 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Toyokuni, S. et al. The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett. 359, 189–191 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Ozeki, M. et al. Susceptibility of actin to modification by 4-hydroxy-2-nonenal. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 827, 119–126 (2005).

    CAS 

    Google Scholar
     

  • Yin, H. & Porter, N. A. Specificity of the ferrous oxidation of xylenol orange assay: analysis of autoxidation products of cholesteryl arachidonate. Anal. Biochem. 313, 319–326 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Recent development on liquid chromatography-mass spectrometry analysis of oxidized lipids. Free Radic. Biol. Med. 144, 16–34 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. Ex vivo oxidation in tissue and plasma assays of hydroxyoctadecadienoates: Z,E/E,E stereoisomer ratios. Chem. Res. Toxicol. 23, 986–995 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Donnell V. B. et al. Failure to apply standard limit-of-detection or limit-of-quantitation criteria to specialized pro-resolving mediator analysis incorrectly characterizes their presence in biological samples. Zenodo (2021).

  • Milne, G. L., Musiek, E. S. & Morrow, J. D. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers 10, S10–S23 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • L’yasova, D., Morrow, J. D., Ivanova, A. & Wagenknecht, L. E. Epidemiological marker for oxidant status: comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F2t-isoprostane. Ann. Epidemiol. 14, 793–797 (2004).


    Google Scholar
     

  • Soffler, C., Campbell, V. L. & Hassel, D. M. Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation: a comparison of enzyme immunoassays with gas chromatography-mass spectrometry in domestic animal species. J. Vet. Diagn. Invest. 22, 200–209 (2010).

    PubMed 

    Google Scholar
     

  • Tsikas, D. & Suchy, M.-T. Assessment of urinary F(2)-isoprostanes in experimental and clinical studies: mass spectrometry versus ELISA. Hypertension 60, e14 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Tsikas, D. Quantitative analysis of biomarkers, drugs and toxins in biological samples by immunoaffinity chromatography coupled to mass spectrometry or tandem mass spectrometry: a focused review of recent applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 133–148 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Davies, K. J. Protein damage and degradation by oxygen radicals: I general aspects. J. Biol. Chem. 262, 9895–9901 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Hawkins, C. L. & Davies, M. J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 294, 19683–19708 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkins, C. L., Morgan, P. E. & Davies, M. J. Quantification of protein oxidation by oxidants. Free Radic. Biol. Med. 46, 965–988 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Rabbani, N. & Thornalley, P. J. Reading patterns of proteome damage by glycation, oxidation and nitration: quantitation by stable isotopic dilution analysis LC-MS/MS. Essays Biochem. 64, 169–183 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Winterbourn, C. C. & Buss, I. H. Protein carbonyl measurement by enzyme-linked immunosorbent assay. Methods Enzymol. 300, 106–111 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhuri, A. R. et al. Detection of protein carbonyls in aging liver tissue: a fluorescence-based proteomic approach. Mech. Ageing Dev. 127, 849–861 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Havelund, J. F. et al. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. J. Proteom. 156, 40–51 (2017).

    CAS 

    Google Scholar
     

  • Butterfield, D. A. & Boyd-Kimball, D. Redox proteomics and amyloid β peptide: insights into Alzheimer’s disease. J. Neurochem. 151, 459–487 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gamon, L. F. et al. Absolute quantitative analysis of intact and oxidized amino acids by LC-MS without prior derivatization. Redox Biol. 36, 101586 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nybo, T., Davies, M. J. & Rogowska-Wrzesinska, A. Analysis of protein chlorination by mass spectrometry. Redox Biol. 26, 101236 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halliwell, B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 411, 157–160 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Poole, L. B. et al. Introduction to approaches and tools for the evaluation of protein cysteine oxidation. Essays Biochem. 64, 1–17 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. & Carroll, K. S. Activity-based sensing for site-specific proteomic analysis of cysteine oxidation. Acc. Chem. Res. 53, 20–31 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, M. P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal. 16, 476–495 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J., Carroll, K. S. & Liebler, D. C. The expanding landscape of the Thiol Redox Proteome. Mol. Cell Proteom. 15, 1–11 (2016).


    Google Scholar
     

  • Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulsen, H. E. et al. RNA modifications by oxidation: a novel disease mechanism? Free Radic. Biol. Med. 52, 1353–1361 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Muruzabal, D., Collins, A. & Azqueta, A. The enzyme-modified comet assay: past, present and future. Food Chem. Toxicol. 147, 111865 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gedik, C. M. & Collins, A. & ESCODD (European Standards Committee on Oxidative DNA Damage).Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J. 19, 82–84 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Henriksen, T., Weimann, A., Larsen, E. L. & Poulsen, H. E. Quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine concentrations in urine and plasma for estimating 24-h urinary output. Free Radic. Biol. Med. 172, 350–357 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Toyokuni, S. et al. Quantitative immunohistochemical determination of 8-hydroxy-2’-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab. Invest. 76, 365–374 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Jorgensen, A., Thygesen, M. B., Kristiansen, U. & Poulsen, H. E. An in silico kinetic model of 8-oxo-7,8-dihydro-2-deoxyguanosine and 8-oxo-7,8-dihydroguanosine metabolism from intracellular formation to urinary excretion. Scand. J. Clin. Lab. Invest. 81, 540–545 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. & Chang, C. J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl Acad. Sci. USA 107, 21316–21321 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutagy, N. E. et al. In vivo reactive oxygen species detection with a novel positron emission tomography tracer, 18F-DHMT, allows for early detection of anthracycline-induced cardiotoxicity in rodents. JACC Basic Transl. Sci. 3, 378–390 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cairns, A. G., McQuaker, S. J., Murphy, M. P. & Hartley, R. C. Insights on targeting small molecules to the mitochondrial matrix and the preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide. Methods Mol. Biol. 2275, 87–117 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Larsen, E. L., Weimann, A. & Poulsen, H. E. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic. Biol. Med. 145, 256–283 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed, O. S. et al. Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Essays Biochem. 64, 463–484 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sies, H. et al. The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition 30, 791–793 (2014).

    PubMed 

    Google Scholar
     

  • Sies, H. & Chance, B. The steady state level of catalase compound I in isolated hemoglobin-free perfused rat liver. FEBS Lett. 11, 172–176 (1970).

    CAS 
    PubMed 

    Google Scholar
     

  • We want to say thanks to the writer of this article for this incredible content

    Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo – Nature Metabolism

    Discover our social media profiles and the other related pageshttps://paw6.info/related-pages/